3.1.82 \(\int \frac {(e \cot (c+d x))^{7/2}}{(a+b \cot (c+d x))^3} \, dx\) [82]

Optimal. Leaf size=476 \[ -\frac {a^{3/2} \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^{7/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) e^{7/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) e^{7/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d} \]

[Out]

-1/4*a^(3/2)*(3*a^4+6*a^2*b^2+35*b^4)*e^(7/2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))/b^(5/2)/(a^
2+b^2)^3/d+1/2*a^2*e^2*(e*cot(d*x+c))^(3/2)/b/(a^2+b^2)/d/(a+b*cot(d*x+c))^2+1/2*(a+b)*(a^2-4*a*b+b^2)*e^(7/2)
*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^3/d*2^(1/2)-1/2*(a+b)*(a^2-4*a*b+b^2)*e^(7/2)*arctan
(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^3/d*2^(1/2)+1/4*(a-b)*(a^2+4*a*b+b^2)*e^(7/2)*ln(e^(1/2)+co
t(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)^3/d*2^(1/2)-1/4*(a-b)*(a^2+4*a*b+b^2)*e^(7/2)*ln(e^(1
/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)^3/d*2^(1/2)+1/4*a^2*(3*a^2+11*b^2)*e^3*(e*cot(d
*x+c))^(1/2)/b^2/(a^2+b^2)^2/d/(a+b*cot(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.81, antiderivative size = 476, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3646, 3726, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \begin {gather*} \frac {e^{7/2} (a+b) \left (a^2-4 a b+b^2\right ) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \left (a^2+b^2\right )^3}-\frac {e^{7/2} (a+b) \left (a^2-4 a b+b^2\right ) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )^3}+\frac {e^{7/2} (a-b) \left (a^2+4 a b+b^2\right ) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^3}-\frac {e^{7/2} (a-b) \left (a^2+4 a b+b^2\right ) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^3}+\frac {a^2 e^3 \left (3 a^2+11 b^2\right ) \sqrt {e \cot (c+d x)}}{4 b^2 d \left (a^2+b^2\right )^2 (a+b \cot (c+d x))}+\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b d \left (a^2+b^2\right ) (a+b \cot (c+d x))^2}-\frac {a^{3/2} e^{7/2} \left (3 a^4+6 a^2 b^2+35 b^4\right ) \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{4 b^{5/2} d \left (a^2+b^2\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Cot[c + d*x])^(7/2)/(a + b*Cot[c + d*x])^3,x]

[Out]

-1/4*(a^(3/2)*(3*a^4 + 6*a^2*b^2 + 35*b^4)*e^(7/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(
b^(5/2)*(a^2 + b^2)^3*d) + ((a + b)*(a^2 - 4*a*b + b^2)*e^(7/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt
[e]])/(Sqrt[2]*(a^2 + b^2)^3*d) - ((a + b)*(a^2 - 4*a*b + b^2)*e^(7/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]
])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^3*d) + (a^2*e^2*(e*Cot[c + d*x])^(3/2))/(2*b*(a^2 + b^2)*d*(a + b*Cot[c + d*
x])^2) + (a^2*(3*a^2 + 11*b^2)*e^3*Sqrt[e*Cot[c + d*x]])/(4*b^2*(a^2 + b^2)^2*d*(a + b*Cot[c + d*x])) + ((a -
b)*(a^2 + 4*a*b + b^2)*e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*
(a^2 + b^2)^3*d) - ((a - b)*(a^2 + 4*a*b + b^2)*e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Co
t[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^3*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3646

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3726

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c*(c*C - B*d))*(a + b*Ta
n[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {(e \cot (c+d x))^{7/2}}{(a+b \cot (c+d x))^3} \, dx &=\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}-\frac {\int \frac {\sqrt {e \cot (c+d x)} \left (-\frac {3}{2} a^2 e^3+2 a b e^3 \cot (c+d x)-\frac {1}{2} \left (3 a^2+4 b^2\right ) e^3 \cot ^2(c+d x)\right )}{(a+b \cot (c+d x))^2} \, dx}{2 b \left (a^2+b^2\right )}\\ &=\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {\int \frac {\frac {1}{4} a^2 \left (3 a^2+11 b^2\right ) e^4-4 a b^3 e^4 \cot (c+d x)+\frac {1}{4} \left (3 a^4+3 a^2 b^2+8 b^4\right ) e^4 \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{2 b^2 \left (a^2+b^2\right )^2}\\ &=\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {\int \frac {2 a b^2 \left (a^2-3 b^2\right ) e^4-2 b^3 \left (3 a^2-b^2\right ) e^4 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{2 b^2 \left (a^2+b^2\right )^3}+\frac {\left (a^2 \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^4\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{8 b^2 \left (a^2+b^2\right )^3}\\ &=\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {\text {Subst}\left (\int \frac {-2 a b^2 \left (a^2-3 b^2\right ) e^5+2 b^3 \left (3 a^2-b^2\right ) e^4 x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{b^2 \left (a^2+b^2\right )^3 d}+\frac {\left (a^2 \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^4\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{8 b^2 \left (a^2+b^2\right )^3 d}\\ &=\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}-\frac {\left (a^2 \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{a+\frac {b x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{4 b^2 \left (a^2+b^2\right )^3 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right ) e^4\right ) \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^3 d}-\frac {\left ((a-b) \left (a^2+4 a b+b^2\right ) e^4\right ) \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^3 d}\\ &=-\frac {a^{3/2} \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^{7/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {\left ((a-b) \left (a^2+4 a b+b^2\right ) e^{7/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left ((a-b) \left (a^2+4 a b+b^2\right ) e^{7/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right ) e^4\right ) \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^3 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right ) e^4\right ) \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^3 d}\\ &=-\frac {a^{3/2} \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^{7/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right ) e^{7/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left ((a+b) \left (a^2-4 a b+b^2\right ) e^{7/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}\\ &=-\frac {a^{3/2} \left (3 a^4+6 a^2 b^2+35 b^4\right ) e^{7/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) e^{7/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) e^{7/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {a^2 e^2 (e \cot (c+d x))^{3/2}}{2 b \left (a^2+b^2\right ) d (a+b \cot (c+d x))^2}+\frac {a^2 \left (3 a^2+11 b^2\right ) e^3 \sqrt {e \cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (a+b \cot (c+d x))}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) e^{7/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 6.19, size = 525, normalized size = 1.10 \begin {gather*} -\frac {(e \cot (c+d x))^{7/2} \left (\frac {2 b \left (3 a^2-b^2\right ) \cot ^{\frac {7}{2}}(c+d x)}{7 \left (a^2+b^2\right )^3}-\frac {2 a \left (3 a^2-b^2\right ) \left (3 \cot ^{\frac {5}{2}}(c+d x)-5 a \left (-\frac {3 a \left (-\frac {\sqrt {a} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )}{b^{3/2}}+\frac {\sqrt {\cot (c+d x)}}{b}\right )}{b}+\frac {\cot ^{\frac {3}{2}}(c+d x)}{b}\right )\right )}{15 \left (a^2+b^2\right )^3}+\frac {2 b \left (3 a^2-b^2\right ) \left (7 \cot ^{\frac {3}{2}}(c+d x)-3 \cot ^{\frac {7}{2}}(c+d x)-7 \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )\right )}{21 \left (a^2+b^2\right )^3}+\frac {4 b^2 \cot ^{\frac {9}{2}}(c+d x) \, _2F_1\left (2,\frac {9}{2};\frac {11}{2};-\frac {b \cot (c+d x)}{a}\right )}{9 a \left (a^2+b^2\right )^2}+\frac {2 b^2 \cot ^{\frac {9}{2}}(c+d x) \, _2F_1\left (3,\frac {9}{2};\frac {11}{2};-\frac {b \cot (c+d x)}{a}\right )}{9 a^3 \left (a^2+b^2\right )}-\frac {a \left (a^2-3 b^2\right ) \left (40 \sqrt {\cot (c+d x)}-8 \cot ^{\frac {5}{2}}(c+d x)+\frac {5}{2} \left (4 \left (\sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-\sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )\right )+2 \sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-2 \sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{20 \left (a^2+b^2\right )^3}\right )}{d \cot ^{\frac {7}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Cot[c + d*x])^(7/2)/(a + b*Cot[c + d*x])^3,x]

[Out]

-(((e*Cot[c + d*x])^(7/2)*((2*b*(3*a^2 - b^2)*Cot[c + d*x]^(7/2))/(7*(a^2 + b^2)^3) - (2*a*(3*a^2 - b^2)*(3*Co
t[c + d*x]^(5/2) - 5*a*((-3*a*(-((Sqrt[a]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]])/b^(3/2)) + Sqrt[Cot[c
+ d*x]]/b))/b + Cot[c + d*x]^(3/2)/b)))/(15*(a^2 + b^2)^3) + (2*b*(3*a^2 - b^2)*(7*Cot[c + d*x]^(3/2) - 3*Cot[
c + d*x]^(7/2) - 7*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2]))/(21*(a^2 + b^2)^3) + (
4*b^2*Cot[c + d*x]^(9/2)*Hypergeometric2F1[2, 9/2, 11/2, -((b*Cot[c + d*x])/a)])/(9*a*(a^2 + b^2)^2) + (2*b^2*
Cot[c + d*x]^(9/2)*Hypergeometric2F1[3, 9/2, 11/2, -((b*Cot[c + d*x])/a)])/(9*a^3*(a^2 + b^2)) - (a*(a^2 - 3*b
^2)*(40*Sqrt[Cot[c + d*x]] - 8*Cot[c + d*x]^(5/2) + (5*(4*(Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - Sq
rt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]) + 2*Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] -
 2*Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/2))/(20*(a^2 + b^2)^3)))/(d*Cot[c + d*x]^(7/2)
))

________________________________________________________________________________________

Maple [A]
time = 0.66, size = 460, normalized size = 0.97

method result size
derivativedivides \(-\frac {2 e^{4} \left (\frac {\frac {\left (a^{3} e -3 a \,b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{3}}-\frac {a^{2} \left (\frac {\frac {\left (5 a^{4}+18 a^{2} b^{2}+13 b^{4}\right ) \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{8 b}+\frac {a e \left (3 a^{4}+14 a^{2} b^{2}+11 b^{4}\right ) \sqrt {e \cot \left (d x +c \right )}}{8 b^{2}}}{\left (e \cot \left (d x +c \right ) b +a e \right )^{2}}-\frac {\left (3 a^{4}+6 a^{2} b^{2}+35 b^{4}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{8 b^{2} \sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right )^{3}}\right )}{d}\) \(460\)
default \(-\frac {2 e^{4} \left (\frac {\frac {\left (a^{3} e -3 a \,b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{3}}-\frac {a^{2} \left (\frac {\frac {\left (5 a^{4}+18 a^{2} b^{2}+13 b^{4}\right ) \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{8 b}+\frac {a e \left (3 a^{4}+14 a^{2} b^{2}+11 b^{4}\right ) \sqrt {e \cot \left (d x +c \right )}}{8 b^{2}}}{\left (e \cot \left (d x +c \right ) b +a e \right )^{2}}-\frac {\left (3 a^{4}+6 a^{2} b^{2}+35 b^{4}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{8 b^{2} \sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right )^{3}}\right )}{d}\) \(460\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(7/2)/(a+b*cot(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-2/d*e^4*(1/(a^2+b^2)^3*(1/8*(a^3*e-3*a*b^2*e)*(e^2)^(1/4)/e^2*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*
x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan
(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/8*(-3*a^
2*b+b^3)/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*
x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+
1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))-a^2/(a^2+b^2)^3*((1/8*(5*a^4+18*a^2*b^2+13*b^4)/b*(
e*cot(d*x+c))^(3/2)+1/8*a*e*(3*a^4+14*a^2*b^2+11*b^4)/b^2*(e*cot(d*x+c))^(1/2))/(e*cot(d*x+c)*b+a*e)^2-1/8*(3*
a^4+6*a^2*b^2+35*b^4)/b^2/(a*e*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/(a*e*b)^(1/2))))

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 428, normalized size = 0.90 \begin {gather*} -\frac {{\left (\frac {{\left (3 \, a^{6} + 6 \, a^{4} b^{2} + 35 \, a^{2} b^{4}\right )} \arctan \left (\frac {b}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} \sqrt {a b}} + \frac {2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {\frac {3 \, a^{5} + 11 \, a^{3} b^{2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {5 \, a^{4} b + 13 \, a^{2} b^{3}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{a^{6} b^{2} + 2 \, a^{4} b^{4} + a^{2} b^{6} + \frac {2 \, {\left (a^{5} b^{3} + 2 \, a^{3} b^{5} + a b^{7}\right )}}{\tan \left (d x + c\right )} + \frac {a^{4} b^{4} + 2 \, a^{2} b^{6} + b^{8}}{\tan \left (d x + c\right )^{2}}}\right )} e^{\frac {7}{2}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(7/2)/(a+b*cot(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/4*((3*a^6 + 6*a^4*b^2 + 35*a^2*b^4)*arctan(b/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^6*b^2 + 3*a^4*b^4 + 3*a^2*
b^6 + b^8)*sqrt(a*b)) + (2*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*
x + c)))) + 2*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) +
sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(a^3 +
3*a^2*b - 3*a*b^2 - b^3)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
 b^6) - ((3*a^5 + 11*a^3*b^2)/sqrt(tan(d*x + c)) + (5*a^4*b + 13*a^2*b^3)/tan(d*x + c)^(3/2))/(a^6*b^2 + 2*a^4
*b^4 + a^2*b^6 + 2*(a^5*b^3 + 2*a^3*b^5 + a*b^7)/tan(d*x + c) + (a^4*b^4 + 2*a^2*b^6 + b^8)/tan(d*x + c)^2))*e
^(7/2)/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(7/2)/(a+b*cot(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(7/2)/(a+b*cot(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(7/2)/(a+b*cot(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*cot(d*x + c))^(7/2)/(b*cot(d*x + c) + a)^3, x)

________________________________________________________________________________________

Mupad [B]
time = 7.26, size = 2500, normalized size = 5.25 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(7/2)/(a + b*cot(c + d*x))^3,x)

[Out]

(((e*cot(c + d*x))^(1/2)*(3*a^5*e^5 + 11*a^3*b^2*e^5))/(4*b^2*(a^4 + b^4 + 2*a^2*b^2)) + (e^4*(e*cot(c + d*x))
^(3/2)*(5*a^4 + 13*a^2*b^2))/(4*b*(a^4 + b^4 + 2*a^2*b^2)))/(a^2*d*e^2 + b^2*d*e^2*cot(c + d*x)^2 + 2*a*b*d*e^
2*cot(c + d*x)) - atan(((((32*a*b^18*d^2*e^21 - 18*a^19*d^2*e^21 - 6528*a^3*b^16*d^2*e^21 + 2758*a^5*b^14*d^2*
e^21 + 26482*a^7*b^12*d^2*e^21 + 21582*a^9*b^10*d^2*e^21 + 7594*a^11*b^8*d^2*e^21 + 3314*a^13*b^6*d^2*e^21 + 2
46*a^15*b^4*d^2*e^21 + 90*a^17*b^2*d^2*e^21)/(b^19*d^5 + 8*a^2*b^17*d^5 + 28*a^4*b^15*d^5 + 56*a^6*b^13*d^5 +
70*a^8*b^11*d^5 + 56*a^10*b^9*d^5 + 28*a^12*b^7*d^5 + 8*a^14*b^5*d^5 + a^16*b^3*d^5) + (((1600*a^2*b^23*d^4*e^
14 + 12864*a^4*b^21*d^4*e^14 + 45312*a^6*b^19*d^4*e^14 + 91392*a^8*b^17*d^4*e^14 + 115584*a^10*b^15*d^4*e^14 +
 94080*a^12*b^13*d^4*e^14 + 48384*a^14*b^11*d^4*e^14 + 14592*a^16*b^9*d^4*e^14 + 2112*a^18*b^7*d^4*e^14 + 64*a
^20*b^5*d^4*e^14)/(b^19*d^5 + 8*a^2*b^17*d^5 + 28*a^4*b^15*d^5 + 56*a^6*b^13*d^5 + 70*a^8*b^11*d^5 + 56*a^10*b
^9*d^5 + 28*a^12*b^7*d^5 + 8*a^14*b^5*d^5 + a^16*b^3*d^5) + ((e*cot(c + d*x))^(1/2)*((e^7*1i)/(4*(b^6*d^2 - a^
6*d^2 + a*b^5*d^2*6i + a^5*b*d^2*6i - 15*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2)*(512*b^28*d^4
*e^10 + 4608*a^2*b^26*d^4*e^10 + 17920*a^4*b^24*d^4*e^10 + 38400*a^6*b^22*d^4*e^10 + 46080*a^8*b^20*d^4*e^10 +
 21504*a^10*b^18*d^4*e^10 - 21504*a^12*b^16*d^4*e^10 - 46080*a^14*b^14*d^4*e^10 - 38400*a^16*b^12*d^4*e^10 - 1
7920*a^18*b^10*d^4*e^10 - 4608*a^20*b^8*d^4*e^10 - 512*a^22*b^6*d^4*e^10))/(b^19*d^4 + 8*a^2*b^17*d^4 + 28*a^4
*b^15*d^4 + 56*a^6*b^13*d^4 + 70*a^8*b^11*d^4 + 56*a^10*b^9*d^4 + 28*a^12*b^7*d^4 + 8*a^14*b^5*d^4 + a^16*b^3*
d^4))*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 + a*b^5*d^2*6i + a^5*b*d^2*6i - 15*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^
4*b^2*d^2)))^(1/2) - ((e*cot(c + d*x))^(1/2)*(1472*a*b^21*d^2*e^17 + 72*a^21*b*d^2*e^17 + 1024*a^3*b^19*d^2*e^
17 + 1352*a^5*b^17*d^2*e^17 + 28224*a^7*b^15*d^2*e^17 + 70240*a^9*b^13*d^2*e^17 + 72640*a^11*b^11*d^2*e^17 + 3
9088*a^13*b^9*d^2*e^17 + 13248*a^15*b^7*d^2*e^17 + 3488*a^17*b^5*d^2*e^17 + 576*a^19*b^3*d^2*e^17))/(b^19*d^4
+ 8*a^2*b^17*d^4 + 28*a^4*b^15*d^4 + 56*a^6*b^13*d^4 + 70*a^8*b^11*d^4 + 56*a^10*b^9*d^4 + 28*a^12*b^7*d^4 + 8
*a^14*b^5*d^4 + a^16*b^3*d^4))*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 + a*b^5*d^2*6i + a^5*b*d^2*6i - 15*a^2*b^4*d^2
- a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2))*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 + a*b^5*d^2*6i + a^5*b*d^2*6i - 1
5*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2) + ((e*cot(c + d*x))^(1/2)*(9*a^16*e^24 + 32*b^16*e^2
4 + 128*a^2*b^14*e^24 + 1417*a^4*b^12*e^24 - 6802*a^6*b^10*e^24 - 1017*a^8*b^8*e^24 - 1020*a^10*b^6*e^24 + 39*
a^12*b^4*e^24 - 18*a^14*b^2*e^24))/(b^19*d^4 + 8*a^2*b^17*d^4 + 28*a^4*b^15*d^4 + 56*a^6*b^13*d^4 + 70*a^8*b^1
1*d^4 + 56*a^10*b^9*d^4 + 28*a^12*b^7*d^4 + 8*a^14*b^5*d^4 + a^16*b^3*d^4))*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 +
a*b^5*d^2*6i + a^5*b*d^2*6i - 15*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2)*1i - (((32*a*b^18*d^2
*e^21 - 18*a^19*d^2*e^21 - 6528*a^3*b^16*d^2*e^21 + 2758*a^5*b^14*d^2*e^21 + 26482*a^7*b^12*d^2*e^21 + 21582*a
^9*b^10*d^2*e^21 + 7594*a^11*b^8*d^2*e^21 + 3314*a^13*b^6*d^2*e^21 + 246*a^15*b^4*d^2*e^21 + 90*a^17*b^2*d^2*e
^21)/(b^19*d^5 + 8*a^2*b^17*d^5 + 28*a^4*b^15*d^5 + 56*a^6*b^13*d^5 + 70*a^8*b^11*d^5 + 56*a^10*b^9*d^5 + 28*a
^12*b^7*d^5 + 8*a^14*b^5*d^5 + a^16*b^3*d^5) + (((1600*a^2*b^23*d^4*e^14 + 12864*a^4*b^21*d^4*e^14 + 45312*a^6
*b^19*d^4*e^14 + 91392*a^8*b^17*d^4*e^14 + 115584*a^10*b^15*d^4*e^14 + 94080*a^12*b^13*d^4*e^14 + 48384*a^14*b
^11*d^4*e^14 + 14592*a^16*b^9*d^4*e^14 + 2112*a^18*b^7*d^4*e^14 + 64*a^20*b^5*d^4*e^14)/(b^19*d^5 + 8*a^2*b^17
*d^5 + 28*a^4*b^15*d^5 + 56*a^6*b^13*d^5 + 70*a^8*b^11*d^5 + 56*a^10*b^9*d^5 + 28*a^12*b^7*d^5 + 8*a^14*b^5*d^
5 + a^16*b^3*d^5) - ((e*cot(c + d*x))^(1/2)*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 + a*b^5*d^2*6i + a^5*b*d^2*6i - 15
*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2)*(512*b^28*d^4*e^10 + 4608*a^2*b^26*d^4*e^10 + 17920*a
^4*b^24*d^4*e^10 + 38400*a^6*b^22*d^4*e^10 + 46080*a^8*b^20*d^4*e^10 + 21504*a^10*b^18*d^4*e^10 - 21504*a^12*b
^16*d^4*e^10 - 46080*a^14*b^14*d^4*e^10 - 38400*a^16*b^12*d^4*e^10 - 17920*a^18*b^10*d^4*e^10 - 4608*a^20*b^8*
d^4*e^10 - 512*a^22*b^6*d^4*e^10))/(b^19*d^4 + 8*a^2*b^17*d^4 + 28*a^4*b^15*d^4 + 56*a^6*b^13*d^4 + 70*a^8*b^1
1*d^4 + 56*a^10*b^9*d^4 + 28*a^12*b^7*d^4 + 8*a^14*b^5*d^4 + a^16*b^3*d^4))*((e^7*1i)/(4*(b^6*d^2 - a^6*d^2 +
a*b^5*d^2*6i + a^5*b*d^2*6i - 15*a^2*b^4*d^2 - a^3*b^3*d^2*20i + 15*a^4*b^2*d^2)))^(1/2) + ((e*cot(c + d*x))^(
1/2)*(1472*a*b^21*d^2*e^17 + 72*a^21*b*d^2*e^17 + 1024*a^3*b^19*d^2*e^17 + 1352*a^5*b^17*d^2*e^17 + 28224*a^7*
b^15*d^2*e^17 + 70240*a^9*b^13*d^2*e^17 + 72640*a^11*b^11*d^2*e^17 + 39088*a^13*b^9*d^2*e^17 + 13248*a^15*b^7*
d^2*e^17 + 3488*a^17*b^5*d^2*e^17 + 576*a^19*b^3*d^2*e^17))/(b^19*d^4 + 8*a^2*b^17*d^4 + 28*a^4*b^15*d^4 + 56*
a^6*b^13*d^4 + 70*a^8*b^11*d^4 + 56*a^10*b^9*d^4 + 28*a^12*b^7*d^4 + 8*a^14*b^5*d^4 + a^16*b^3*d^4))*((e^7*1i)
/(4*(b^6*d^2 - a^6*d^2 + a*b^5*d^2*6i + a^5*b*d...

________________________________________________________________________________________